Novel reagentless electrodes for biosensing
نویسنده
چکیده
Analytical chemical information is needed in all areas of human activity including health care, pharmacology, food control and environmental chemistry. Today one of the main challenges in analytical chemistry is the development of methods to perform accurate and sensitive rapid analysis and monitoring of analytes in ‘real’ samples. Electrochemical biosensors are ideally suited for these applications. Despite the wide application of electrochemical biosensors, they have some limitations. Thus, there is a demand on improvement of biosensor performance together with a necessity of simplification required for their mass production. In this thesis the work is focused on the development of electrochemical sensors with improved performance applicable for mass production, e.g. by screen printing. Biosensors using immobilized oxidases as the bio-recognition element are among the most widely used electrochemical devices. Electrical communication between redox enzymes and electrodes can be established by using natural or synthetic electron carriers as mediators. However, sensors based on soluble electronshuttling redox couples have low operational stability due to the leakage of water-soluble mediators to the solution. We have found a new hydrophobic mediator for oxidases – unsubstituted phenothiazine. Phenothiazine and glucose oxidase, lactate oxidase or cholesterol oxidase were successfully co-immobilized in a sol-gel membrane on a screen-printed electrode to construct glucose, lactate and cholesterol biosensors, respectively. All elaborated biosensors with phenothiazine as a mediator exhibited long-term operational stability. A kinetic study of the mediator has shown that phenothiazine is able to function as an efficient mediator in oxidase-based biosensors. To improve sensitivity of the biosensors and simplify their production we have developed a simple approach for production of graphite microelectrode arrays. Arrays of microband electrodes were produced by screen printing followed by scissor cutting, which enabled the realization of microband arrays at the cut edge. The analytical performance of the system is illustrated by the detection of ascorbic acid through direct oxidation and by detection of glucose using a phenothiazine mediated glucose biosensor. Both systems showed enhanced sensitivity due to improved mass transport. Moreover, the developed approach can be adapted to automated electrode recovery. Finally, two enzyme-based electrocatalytic systems with oxidation and reduction responses, respectively, have been combined into a fuel cell generating a current as an analytical output (a so-called self-powered biosensor). This was possible as a result of the development of the phenothiazine mediated enzyme electrodes,
منابع مشابه
Cholesterol self-powered biosensor.
Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a...
متن کاملModified Tin Oxide Based Bioelectrode for Reagentless Detection of Uric Acid
A reagentless uric acid biosensor has been realized using Copper implanted tin oxide thin film (Cu:SnO2) based matrix. The biosensing characteristics of implanted matrix have been studied using the electrochemical impedance spectroscopy and cyclic voltammetry. The prepared matrix (Cu:SnO2), because of the presence of Cu, possess redox properties so that the electron transfer from enzyme to the ...
متن کاملFunctionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode.
Poly(amidoamine) dendrimers having various degrees of modification with the redox-active ferrocenyls were prepared by controlling the molar ratio of ferrocenecarboxaldehyde to amine groups of dendrimers. By alternate layer-by-layer depositions of partial ferrocenyl-tethered dendrimers (Fc-D) with periodate-oxidized glucose oxidase (GOx) on a Au surface, an electrochemically and enzymatically ac...
متن کاملCatalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes
We report a novel microwave plasma enhanced chemical vapor deposition strategy for the efficient synthesis of multilayer graphene nanoflake films (MGNFs) on Si substrates. The constituent graphene nanoflakes have a highly graphitized knife-edge structure with a 2–3 nm thick sharp edge and show a preferred vertical orientation with respect to the Si substrate as established by near-edge X-ray ab...
متن کاملQuinone-Based Polymers for Label-Free and Reagentless Electrochemical Immunosensors: Application to Proteins, Antibodies and Pesticides Detection
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox tran...
متن کاملEvaluation of Different Functionalized CNTs for Development of Choline Amperometric Biosensor
Choline oxidase (ChOx) was chosen as a model enzyme for evaluating the performance of CNTs’ functional groups for development of enzyme electrodes. CNTs were functionalized with carboxylic acid, amine or amide groups. Carboxylic acid, amine and amide functionalized CNTs were obtained by acid treatment, ethylenediamine or tetraethylenepentamine chemically modification and ammonia plasma treatmen...
متن کامل